Efficient estimation for ergodic diffusions sampled at high frequency

نویسندگان

  • Michael Sørensen
  • M. Sørensen
چکیده

A general theory of efficient estimation for ergodic diffusions sampled at high frequency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the previously proposed estimators for diffusion processes, for instance GMM-estimators and the maximum likelihood estimator. Simple conditions are given that ensure rate optimality, where estimators of parameters in the diffusion coefficient converge faster than estimators of parameters in the drift coefficient, and for efficiency. The conditions turn out to be equal to those implying small ∆-optimality in the sense of Jacobsen and thus gives an interpretation of this concept in terms of classical statistical concepts. Optimal martingale estimating functions in the sense of Godambe and Heyde are shown to be give rate optimal and efficient estimators under weak conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating functions for noisy observations of ergodic diffusions

In this article, general estimating functions for ergodic diffusions sampled at high frequency with noisy observations are presented. The theory is formulated in term of approximate martingale estimating functions based on local means of the observations, and simple conditions are given for rate optimality. The estimation of diffusion parameter is faster that the estimation of drift parameter, ...

متن کامل

Sample Partitioning Estimation for Ergodic Diffusions

In this paper we present a new technique to obtain estimators for parameters of ergodic processes. When a diffusion is ergodic its transition density converges to the invariant density [1]. This convergence enabled us to introduce a sample partitioning technique that gives, in each sub-sample, observations that can be treated as independent and identically distributed. Within this framework, is...

متن کامل

Sharp Adaptive Estimation of the Drift Function for Ergodic Diffusions

The global estimation problem of the drift function is considered for a large class of ergodic diffusion processes. The unknown drift S(·) is supposed to belong to a nonparametric class of smooth functions of order k ≥ 1, but the value of k is not known to the statistician. A fully data-driven procedure of estimating the drift function is proposed, using the estimated risk minimization method. ...

متن کامل

Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions

L.I. GALTCHOUK and S.M. PERGAMENSHCHIKOV IRMA, Strasbourg University, 7 rue Rene Descartes, 67084, Strasbourg, France. E-mail: [email protected] Laboratoire de Mathématiques Raphael Salem, Université de Rouen, Avenue de l’Université, BP. 12, F76801, Saint Etienne du Rouvray, Cedex France and Laboratory of Quantitative Finance, National Research University – Higher School of Econo...

متن کامل

Sample Partitioning Estimation for Ergodic Diffusions: Application to Ornstein-uhlenbeck Diffusion

When a diffusion is ergodic its transition density converges to its invariant density, see Durrett (1998). This convergence enabled us to introduce a sample partitioning technique that gives in each sub-sample, maximum likelihood estimators. The averages of these being a natural choice as estimators. To compare our estimators with the optimal we obtained from martingale estimating functions, se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007